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The extended Graetz problem, a classical problem described by an equation with a non-self- 
adjoint second-order elliptic differential operator, is solved by two numerical methods based 
on Chebyshev expansions: A Chebyshev-finite difference method and a Chebyshev-“finite” 
element method. The latter relies entirely on Chebyshev expansions, global in the bounded 
(radial) coordinate direction and local in the unbounded (axial) direction and proves to be 
more accurate than the Chebyshev-finite difference method in resolving singularities. Both 
methods can be applied to general type boundary-value problems involving second-order 
elliptic operators, have accuracy comparable to high order finite difference schemes and are 
operation cost efficient. lej 1984 Academic Press, Inc. . 

INTRODUCTION 

In earlier papers [l, 2] Chebyshev expansion techniques for the solution of inirial- 
value laminar forced convection problems in pipes were presented. Those problems, 
with axial conduction neglected, exhibit a boundary layer structure. With axial 
conduction included (low Peclet number), heat transfer problems in laminar pipe flow 
constitute boundary-value problems of the elliptic type. When the physical properties 
of the system involved are taken to be constant, the extended Graetz problem is 
defined. This problem has long been in the midst of numerous attempts, analytical 
[3-51 and computational [6--S], to generate methods for the solution of second-order 
elliptic differential equations involving non-selfadjoint operators. 

Because of their fast convergence (exponential convergence as compared to 
algebraic of finite difference solvers) and the capability to accurately resolve thin 
layers where steep changes in the field variables (and/or the transport coefftcients) 
occur, Chebyshev expansion methods are particularly suitable for the solution of the 
extended Graetz problem. Chebyshev expansion methods were used for the solution 
of Poisson’s equation in a rectangle with Dirichlet and/or periodic boundary 
conditions by Haidvogel and Zang [9], Delves and Hall [lo], and Orszag [l I]. The 
applicability of these methods to the extended Graetz problem is limited by their 
specificity (solvers for Poisson’s equation with boundary conditions of certain types), 
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the absence of a mechanism to treat singularities [9] or by poor computational 
economy features [ 111. 

We have developed two Chebyshev expansion methods for the solution of the 
extended Graetz problem which can be applied to the solution of general type elliptic 
equations with no restrictions on the boundary conditions and which are easily 
implemented and operation cost efficient. Before we proceed with the description of 
the methods as applied to the extended Graetz problem, we present a summary of the 
methods used for the calculation of derivatives and integrals from Chebyshev 
expansions. 

CALCULATION OF DERIVATIVES AND INTEGRALS 
FROM CHEBYSHEV EXPANSIONS 

For a functionf(x) with x E [-1, 11, the N + l-term Chebyshev expansion is 

N+l 

f(x) = c ap~p--1W 

p=1 

(1) 

With the collocation points selected as x, = cos($n - 1)/N) (1 < n < N + l), the 
expansion (1) becomes 

N+l 

f, =f(x,) = c up cos 4p - ;@ - l) 

p=1 

with aD given by 

(24 

(2b) 

and C1 =F,,+r = 2, L’I, = 1 for 1 <p < N + 1. In matrix form, Eq. (2b) can be written 
as 

a = ff (3) 

where 
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The first derivative off(x) can be approximated as 

.v t 1 
f’(x,) = c ~~“~,&,7) 

p=1 

where a:’ are now given by 

Nfl 

.-$,, @- l)% 

ntpodd 

and 

Cl = 2, c,= 1, P>2* 

Equations (4a) and (4b), in matrix form are written as 

arid 

(4a) 

(4bj 
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respectively, where 
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--* TN(%) 

*** w-a 
. . . . . . . . . . : 

a-- T,(x,) 

T&N+ 1) T,(x,,+,) *-- TA&v+ I> 

and G(l) is a (N + 1) X (N + 1) matrix with elements 

G!!’ = 0 v if i>jori+jeven 

= W- 1) otherwise. 
ci 

Combining Eqs. (5a), (5b) and (3), we get 

f’ = TG(‘)a = TG(‘)ff= e(l)f 

where 

(?j(l) = TG”‘? 

In a similar way, the approximation to the second derivative is 

with 

M+l 

f"(x,)= c ~f)T~-~(x,,) 
p=1 

a’2’ = _ 
P : Jfl (n - w,‘). 

n +P odd 

In matrix form, Eqs. (8a) and (8b) can be written as 

f” = Ta’Z’ 

and 

respectively. Equations (9a) and (9b), in view of Eqs. (5a) and (5b), give 

and 
f” = fG’“‘a = TG’2’Tf= @)f 

(6) 

(74 

0) 

@a) 

(8b) 

(gal 

Pb) 

(loa) 

(lob) 
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where 
G(2) = G(‘)G(‘) ill) 

and 
&” = TG’Z’f (12) 

This completes the calculation of the derivatives of a function from its Chebyshev 
expansion. 

Regarding integrals of f(x), the integral 1” i f(x^) dx^ for f(x) being sufficiently 
smooth, can be calculated from [ 121 

r f(i) d2 = ‘y b,T,-,(x) 
-1 p=1 

(13) 

with b,,, = a,v+,/2(N+ l), b,,, = a,/2N, 6, = (l/2@ - l))(c,-,a,-, -a,+,), 
n = 2, 3,..., N (a, are the coefficients of expansion (1)). By requiring that the integral 
vanishes for x = -1, we obtain for J’? i f(x) d-x 

1’ f(x)dx=2(b,+b,+...) 
1 

( 

a3 =2 a,--- ..I 

1 *3 ) 

=2a~- It ‘[ I I?=2 
-j-$-j- aptI 

p = even 

=Ira (14) 

where 

I==2 l,O,-$0,~-, ,... . 
I 

1 
3.5 

0 
1 

Equation (la), in view of Eq. (3), can be written as 

1’ f(x)dx=ITTf=WTf 
---I 

with WT = I’?. This integration procedure was used to calculate bulk temperatures 
needed in the evaluation of the Nusselt numbers for the extended Graetz problem. 

If the interval of definition, [xi, x2], for the function under consideration is 
different than I-1, 11, [ x1, x2] is mapped onto I-1, 1 ] through 

x, = 2.u - (Xl +x2) 

x2 -x1 

(14) 
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before the previously described procedures for calculating derivatives and integrals 
are applied. 

THE EXTENDED GRAETZ PROBLEM 

The energy equation for hydrodynamically developed flow in a circular pipe, with 
axial conduction included, reads 

(17) 

where a is the thermal diffusivity, r is the radial and z the axial distance, respectively, 
T is the local temperature and U, follows a Poiseuille distribution. The retaining of 
the axial conduction term in the energy equation is a consequence of the low Peclet 
number, Pe = 2R(u,)/cr (R is the radius of the pipe and (u,) the cross-sectional area 
averaged velocity). We seek the solution of Eq. (17) in the case of a stepwise varying 
wall temperature. Equation (17) is solved subject to the boundary conditions 

z=--00, O,<r<R, T= To (18a) 

z=+oo, O<r<R, T= T, W) 

z < 0, r=R, T= T,, PC) 

z > 0, r=R, T= T,,, (184 

--co<z<+co, r = 0, aT 0 
ar= * (184 

The field variables and the radial distance are non-dimensionalized as 

r’=L T- T, 

R’ 
T’ = 

To - T,” ’ 

while the unbounded z-domain is mapped into a finite domain through the transfor- 
mation advanced by Verhoff and Fisher [7] 

WY 

In Eq. (20), K is a constant at our disposal which facilitates the amplification of the 
near z’ = 0 region, where steep changes in temperature occur. With this non- 
dimensionalization Eq. (17) becomes 
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cos2 712’ aT’ 
Pe(1 -r’*) aZI 

mc 

a2T’ 13T’ 1 azT’ 
=ar’z+yqT+--T W) 

cos4 712’ __ - 
azf2 

(21) 

subject to the boundary conditions 

z’=-05 * 3 0 < r’ < 1, T:=l (22a) 

z’ = +os, 0 < r’ < 1, T’ = 0 (22b) 

z’ GO, r’= 1, T’ = 1 (22c) 

z’>O, r’ = 1, T’=O (22dj 

-0.5 < z’ < t0.5, r’ = 0, 
CYT’ 
- = 0. 
a? 

(22e) 

We present below two Chebyshev expansion methods for the solution of the 
extended Graetz problem. In both these methods Chebyshev expansions are used to 
evaluate the radial derivatives according to the matrix scheme earlier described. In 
the Chebyshev-finite difference method, finite difference approximations are used for 
the axial derivatives, while in the Chebyshev-“finite” element method, the z/-region is 
subdivided in a finite number of subregions and Chebyshev expansions confined to 
every subregion are used to calculate the axial derivatives. 

CHEBYSHEV-FINITE DIFFERENCE METHOD 

The domain of solution, (-0.5, +0.5) 0 (0, l), for the previously described 
problem is discretized to include NZ + 1 equally spaced points in the Y-direction and 
NR + 1 points in the radial direction. The latter are selected as the collocation points 
of the Chebyshev expansions in the radial direction. If second order finite difference 
approximations are used for the axial derivatives appearing in Eq. (21), while the 
radial derivatives in the same approximation are evaluated from Chebyshev 
expansions as earlier described, the discrete form of Eq. (2 1) is 

ai,jTf-l,j + bi.j Tj,j + Ci,j TI+ 1 .j - ff T;qidj,/ = g,,j 
i=2 

with 

cos4 7L?; 1 71 cos’ xz{ sin 7rzf 
(ZK)” z-- @K)- AZ' 

(24aj 

581.‘56:3-IO 
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cod 7L?; 2 
bi,j= - 

(7uc)” d,?YZ (24b) 

ci,j= pe(l -$‘) cotKnz’ ---&- 
cos4 nzi’ 1 7r 

(?rK)* dzlz+2 
cos3 zzzf sin 7rz; 

WI AZ’ 
PC) 

PW 

and eRi.7, dRi,"J! are the ij-components of the e(‘) and e(*’ matrices defined in Eqs. 
(7b) and (12), respectively, from Chebyshev expansions in the r/-direction. The 
boundary conditions of Eq. (22e) can be implemented as 

NR+I 

c T;,~R;~+,,,=O. 
l=l ’ 

(25) 

Equation (23), together with the boundary conditions, can be recast in the form 

AX=B 

where A has the structure 

A= 

C(*‘D(*‘E(*’ 

L 

X and B can be partitioned into 

B= 

(26) 

(274 

(27b) 

c(i) 3 D”’ and E(i) , i = l,..., NZ - 1, are (NR - 1) X (NR - 1) matrices with elements 

cjf! =ai+l,j+l for j=I 

=o otherwise 
PW 
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=dj+I,I+* 

E!” = c. 
),I I+ t.j+ t 

=o 

The vectors X(11 and B”’ are given by 

x”’ = 

and 

B’l’ = 

otherwise 

for j=/ 

otherwise 

i = l,..., NZ - 1 

503 

(2%) 

(23C) 

(JOa) 

i = 2,..., NZ - 2 (30b) 

Equation (26) can be solved by applying the LU decomposition 113, 141. The storage 
required for A, (NR - 1) x (NR) x (NZ - l), is less than the storage required by a 
straight finite difference method of comparable accuracy. 

CHEBYSHEV-“FINITE" ELEMENT METHOD 

This method is similar to the “global element” method of Delves and Hall [ lOlO It 
is different from the latter in the following: 

1. In the global element method, local Chebyshev expansions are used in both 



504 KU AND HATZIAVRAMIDIS 

directions of a two dimensional domain. Here, local dimensions are used for the 
extended (axial) direction only. 

2. In the global element method, the expansion coefficients are determined as 
stationary points of a variational functional. Here, the solution is obtained in terms of 
the field variables and not the expansion coefficients. 

These two differences account for the superiority of the method described here in 
terms of computational efficiency and economy, when it is compared to the global 
element method. Both methods share generality in their applicability to second order 
elliptic problem with self-adjoint or non-self-adjoint operators and a variety of 
boundary conditions (homogeneous or nonhomogeneous). Both methods treat the 
differential equation and the boundary conditions on equal footing and can be shown 
to resolve efficiently singularities in the domain of solution or its boundaries (in the 
extended Graetz problem a singularity exists for the pipe wall temperature at z’ = 0). 

The use of a global Chebyshev expansion for the evaluation of the axial derivatives 
is accompanied by severe errors (Gibbs oscillations) which arise from steep changes 
in the temperature in the neighborhood of z’ = 0. These Gibbs phenomena can not be 
smoothed out by filtering techniques [2]. The z/-domain, instead, is divided into a 
small number, NE, of “elements.” Chebyshev expansions in the z/-direction are 
employed for each element while continuity of temperature and heat fluxes is imposed 
at the element-element interface. Thus the approximation to Eq. (21) in the interior of 
each element becomes 

NZ+l NZ+l 

ai,j C eZi,li Ti,j - bi?j )J GZjfi TL,j 
k=l k=l 

- z Ti,/dj,i = gi.j 

with 

ai,j = Pe(l - rj”) cos~~zi + 
27z 

(71K)z 
cos3 7cz: sin 7cz; 

bi..f=&jT cos4 712; 

(31) 

(324 

Wb) 

for i = l,..., NZ + 1 and j = 2,..., NR and dj,!, gi,j given by (24d) and (24e), respec- 
tively. 6Z$ and C!?ZifL are the &elements of the e(i) and G(2) matrices respectively, 
constructed from local Chebyshev expansions in the z/-direction. The continuity 
requirements at the element-element interface yield 

Tk+ l,j /ekmentN- 1 = Ti,j Ielement~ Wa) 
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and 

for j = 2,..., NR and N=2 ,..., NE. L is the length of the element. Equation (3 1) 
together with the continuity requirements (33a) and (33b) and the boundary 
conditions can be cast into the form 

AX=B (341 

where A has the diagonal form 

and X and B can be partitioned as 

I , B= 

I B’NE’ 

(35a) 

(35b3 

The hatched area in Eq. (35a) arises from the coupling due to the continuity 
requirements at the element-element interface. The blocks AcN), N = l,..., NE, of size 
(NZ + 1)2 X (NR - 1)’ with a (NR - 1) x (iVR - 1) overlap region at the corners, 
consists of elements C(i,k), i, k = l,... ,NZ+l,whichinturnare(NR-l)X(NR-I) 
matrices with elements Cjf;“’ (j, I= l,..., NR - 1) of the following form. 
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For A”‘: 

qp = 1 if j=l 

=o otherwise 

C,!‘;k’ zz a. ,+l,ieZrt~-bj+l,i~Zlf~ if j=Zandi#k 

(364 

=o if j#Iandi#k 

&Ti’; -b. J+t,ieZlf!-dj+l,l+l =‘j+l,i , if j=landi=k 
Wb) 

=-dj+,,l+l if j#Iandi=k 

c,y+ ‘20 = &“’ 
NZt1.k if j=landk#Nz+ 1 

= ezk!j+ ,,NZ+ 1 hement 1 - ez::: h?le”t 2 if j=landk=NZ+ 1 

= 0 if j#landk=NZ+ 1. (36~) 

For AcN’ (N= 2,..., NE - 1): 

C(l.1) = C~~++‘.N=+“JelementN-’ j.1 if j=l 

=o otherwise 

c!‘,k’ = -&:‘; 
J,l 

if j=l 

=o otherwise (k # 1) 

c!Lk) = a, 
I.1 J+l,i~ZI~~ - bj+l,idZIs if j=Iandi#k 

(3 7a) 

Wb) 

=o if jflandifk 

= a.it I,i &(I) -b. 
i.k 

.&;‘,’ -d. 
Jtl,l , Jtl.l+l 

if j=Iandi=k 
(37c) 

=-dj+l,l+l if j#Iandi=k 

c(N=t ‘A) = ez(” 
5.1 N2tl.k if j=Iandk#NZ+ 1 

= ~zi2+I,~~+~lt-k~~~t~ - ~z~t~Iekme~t~+l if j=Iandk=NZ+ 1 

=o if j + 2. (374 

For ACNE’: 

C!‘,” = C~~~+‘,N=+‘)Je,eme”tNE--l 
J.1 

if j=I 

=o otherwise 

c;‘/k’ = -&$ if j=l 

=o otherwise (k # 1) 

(384 

(3 8b) 
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c!‘,k’ 
.I.! = aj+ 1.i 

(&‘!l) -b. 
r,k 

.&?’ 
./+I,1 l,k 

if j=landi#k 

=o if j#landi#k 
(3&C) 

= aj+ l,i 
&i+” - b. 

z,k J+ l.ieZi:i - dj+ I,!+ 1 if j=Iandi=k 

zz 
-dj+l,i+l 

if j#Iandi=k 

cj,y+ !,k) = 0 if k#NZ+l 

ZZ 1 if k=NZ+ landj=l 

=o if k=NZ+ 1 andj#Z. 

The vectors XtN’ and B’“’ in Eq. (35b) are defined as 

x WV) = 7 N = l,..., NE 

with 

) i= l,...,NZ$ 1 

and 

B’“’ = 9 N = l,..., NE 

i=2,...,NZ 

(38d) 

(40a) 

(40bj 
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and 
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B,=O for B(N), N = 2,..., NE 

B -0 NZ+l - for BcN), N = I,..., NE - 1 

B,=X, for B”’ 

B - xNZ+l NZ+l- for BtNE’. 

(4Oc) 

Equation (34) can be solved in an efficient manner again by applying the LU 
factorization. The storage size required for A is (NR - 1)’ X (NZ + 1)2 X NE? again 
less than the full finite-difference approximation of comparable accuracy. 

RESULTS 

Temperature profiles at the centerline for different Peclet numbers obtained by both 
the Chebyshev-finite difference and the Chebyshev-finite element methods, together 
with results from the analytical solution are presented in Fig. 1. The temperature 
profiles determined by the Chebyshev expansion methods agree well with those of the 
analytical solution [3]. Figure 2 shows temperature profiles at r’ = 0.5 calculated by 
both Chebyshev expansion methods. The profiles match each other very well. 
However, at r’ = 0.9045, close to the pipe wall where a singularity in temperature at 
z’ = 0 exists, discrepancies between the profiles determined by the two Chebyshev 
expansion methods are observed (Fig. 3). Discrepancies between the predictions of 

1 

Dimensionless axial distance, be 

FIG. 1. Temperature profiles at radial position r’ = 0 for various Peclet numbers. Chebyshev-finite 
difference methods: -, Pe = 5; -.-, Pe = 10; -..-, Pe = 20. Chebyshev-finite element method: 0, 
Pe = 5; A, Pe = 10; n , Pe = 20. Analytical solution: 0, Pe = 5; A, Pe = 10; 0, Pe = 20. 
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FIG. 2. Temperature profiles at radial position r’ = 0.5 for various Peciet numbers. Chebyshev-finite 
difference methods: -+ Pe = 5; -.-, Pe = 10; -. .-, Pe = 20. Chebyshev-finite element method: 
Pe = 5: A, Pe = 10; m, Pe = 20. Analytical solution: 0, Pe = 5; a, Pe = 10: 0, Pe = 20. 

the two methods are also observed at z’ = 0 where the temperature field undergoes 
steep changes (Table I>. The Chebyshev-finite element method was proved to be more 
effkient in resolving singularities and non-smooth behavior in the temperature. For 
Pe > 100, the boundary layer character of the solution dominates and the Chebyshev- 
finite element method is again proven to be superior to the Chebyshev-finite 
difference method. 

FIG. 3. Temperature profiles at radial position r’ = 0.9045 for various Pectet numbers. Chebyshev- 
finite difference methods: -, Pe = 5; - -, Pe = 10; -. -, Pe = 20. Chebyshev-finite element method: 8, 
Pe = 5; A. Pe = 10; H. Pe = 20. Analytical solution: 0, Pe = 5; A, Pe = 10; 0, Pe = 20. 
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TABLE I 

Temperature Profiles at z’ = 0 for Different Peclet Numbers Calculated by the Chebyshev-Finite 
Difference (CFD) and the Chebyshev-Finite Element (CFE) Methods 

Pe 5 10 20 40 

r’ CFD CFE CFD CFE CFD CFE CFD CFE 

0.975 0.400 0.5197 0.3202 0.5330 0.274 1 0.5507 0.2379 0.572 1 
0.904 0.5485 0.5740 0.5649 0.6189 0.5914 0.6791 0.6189 0.7442 
0.794 0.6356 0.6493 0.707 1 0.7319 0.7890 0.8209 0.8692 0.905 1 
0.654 0.7193 0.7269 0.8232 0.835 1 0.9140 0.9253 0.9737 0.9757 
0.5 0.7856 0.7913 0.9003 0.9071 0.9715 0.9754 0.9969 0.9976 
0.345 0.8309 0.8349 0.9435 0.9469 0.9916 0.9924 0.9998 0.9996 
0.206 0.8554 0.8591 0.9628 0.9654 0.9969 0.9974 1.0000 1 .oooo 
0.0 0.8719 0.8645 0.9733 0.9668 0.9989 0.9931 1 .oooo 0.995 1 

In Fig. 4, local Nusselt numbers defined by 

(4lb) 

FIG. 4. Nusselt number as a function of axial distance for various Peclet numbers. Chebyshev-finite 
difference method: -, Pe = 5; -. -, Pe = 10; -. . -, Pe = 20; -. . . -, Pe = 40. Chebyshev-finite element 
methods: 0, Pe = 5; A, Pe = 10; n , Pe = 20; 0, Pe = 40. 
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calculated by both methods are presented. The integrals in (41b) were evaluated by 
the Chebyshev expansion-integration earlier described. Near the pipe entrance region, 
predictions by the Chebyshev-finite element method are more accurate than those 
from the Chebyshev-finite difference method. However, both methods predict equaily 
well the asymptotic Nusselt number (z --t +oo) in agreement with the analytical 
solution. 

The computations described above were done on a PRIME 400 computer. Storage 
and computational time requirements for both Chebyshev expansion methods were 
particularly low. 

CONCLUSIONS 

The extended Graetz problem which is described by a second-order elliptic 
differential equation with a non-self-adjoint operator was solved by two Chebyshev 
expansion methods. Both these methods employ Chebyshev expansions for the 
derivatives in the radial direction while derivatives in the axial direction are evaluated 
by either finite difference approximations (Chebyshev-finite difference method) or 
Chebyshev expansions developed for individual sub-regions of the axial domain 
(Chebyshev-finite element). 

In both methods the problem is reduced to a system of coupled equations which 
can be solved efficiently by applying LU factorization. 

Both methods are applicable to general type second order elliptic problems (with 
self or non-self-adjoint operators, variable coefficients, etc.) and a variety of 
boundary conditions [homogeneous or nonhomogeneous). The methods treat the 
differential equation and the boundary conditions on equal footing. Both methods 
have low storage and computational time requirements. 

The Chebyshev-finite element method proved to be superior in accuracy in 
resolving singularities and non-smooth behavior in the approximated functions. This 
is clearly demonstrated by the results of the computations for the extended Craetz 
problem in the neighborhoods of z’ = 0, where heating begins, and r’ = 1, the pipe 
wall. It was also proved superior to the Chebyshev-finite difference method in terms 
of computational economy. Half as many points in the z/-direction were required by 
the Chebyshev-finite element method for comparable accuracy. The Chebyshev-finite 
element method is similar to the global element method [lo]. However, contrary to 
that method for which its developers [ 151 state that “the economics of the scheme do 
not appear promising,” the Chebyshev-finite element method is computationally 
efficient and operation cost effective. 
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